The $6^{\text {th }}$ Romanian Master of Mathematics Competition

Day 2. Grading schemes

Any equivalent approach, for each of the topics addressed in these Grading Schemes, should receive proper and proportionately judged equivalent marks.

Problem 4. Let P and P^{\prime} be two convex quadrilateral regions in the plane (regions contain their boundary). Let them intersect, with O a point in the intersection. Suppose that for every line ℓ through O the segment $\ell \cap P$ is strictly longer than the segment $\ell \cap P^{\prime}$. Is it possible that the ratio of the area of P^{\prime} to the area of P is greater than 1.9?

Grading Scheme

A valid example of two desired polygons with a lack of proof that it works
\qquad
A non-valid example which can easily be repaired \qquad not more than 5 points

If a valid example is not provided:

- Proving that $\left[P^{\prime}\right] /[P] \leq 2$ \qquad 1 point
- Indicating useful properties of the desired configuration, e.g., that in order to satisfy the requirements, point O should be close enough to the boundary of P^{\prime} \qquad

Remark. These points are not to be added.

No points are awarded for just claiming the answer.

Problem 5. Given an integer $k \geq 2$, set $a_{1}=1$ and, for every integer $n \geq 2$, let a_{n} be the smallest $x>a_{n-1}$ such that:

$$
x=1+\sum_{i=1}^{n-1}\left\lfloor\sqrt[k]{\frac{x}{a_{i}}}\right\rfloor .
$$

Prove that every prime occurs in the sequence a_{1}, a_{2}, \ldots.

Grading Scheme

Claiming that the a_{n} are exactly all k th-power-free numbers 2 points Claiming just that the a_{n} are among the k th-power-free numbers or vice versa 1 point

Remark. These points are surely not no be added to each other, but they are to be added up to the points mentioned below.

Solution 1 is based on the relation

$$
\begin{equation*}
\sum_{b \in B, b \leq c}\left\lfloor\sqrt[k]{\frac{c}{b}}\right\rfloor=c \tag{1}
\end{equation*}
$$

where B is the set of all k th-power-free numbers.

- Proving that (1) holds
- The final induction

2 points

Solution 2 is based on the properties of the functions $f_{n}(x)$ and $g_{n}(x)$. It splits into two parts.

1. Preliminary observations:

- Just introducing the functions $f_{n}(x)$ and $g_{n}(x)$, and establishing that $f_{n}(x)+1 \geq f_{n}(x+1)$

- Proving that $f_{n}(x)<0$ for all integer $x \in\left(a_{n-1}, a_{n}\right) \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . .1$ point
- Proving that a_{j} / a_{i} is not the k th power of an integer 1 point

2. The final induction. If, under the induction hypothesis, it is proved that
(1) a_{n} is the least number $x>a_{n-1}$ such that $g_{n}(x)=0$
(2) the least number $x>a_{n-1}$ such that $g_{n}(x)=0$ is k th-square-free

Putting it all together

Remark. The points for one approach are to be added up; the points for different approaches are not to be added up.

Problem 6. $2 n$ distinct tokens are placed at the vertices of a regular $2 n$-gon, with one token placed at each vertex. A move consists of choosing an edge of the $2 n$-gon and interchanging the two tokens at the endpoints of that edge. Suppose that after a finite number of moves, every pair of tokens have been interchanged exactly once. Prove that some edge has never been chosen.

Grading Scheme

Showing that the circular order of any three tokens is reversed after the process has been carried
\qquad

Showing that the final arrangement is obtained from the initial one by reflection in some line ℓ
\qquad
Proving that ℓ crosses two opposite sides a and b (but does not pass through the vertices)
\qquad
Proving that a token cannot move along both a and b
1 point

Finally, showing that every two tokens either both moved along a or both moved along b
\qquad
If this is shown only for the tokens on the same side of ℓ \qquad 1 point is deducted All these points are to be added up.

No points are awarded for examples of such sequence of switchings.

