The 6th Romanian Master of Mathematics Competition

Day 2. Grading schemes

Any equivalent approach, for each of the topics addressed in these Grading Schemes, should receive proper and proportionately judged equivalent marks.

Problem 4. Let P and P' be two convex quadrilateral regions in the plane (regions contain their boundary). Let them intersect, with O a point in the intersection. Suppose that for every line ℓ through O the segment $\ell \cap P$ is strictly longer than the segment $\ell \cap P'$. Is it possible that the ratio of the area of P' to the area of P is greater than 1.9?

GRADING SCHEME

A valid example of two desired polygons with a lack of proof that it works not less than 5 points A non-valid example which can easily be repaired not more than 5 points

If a valid example is not provided:

- Proving that $[P']/[P] \leq 2$ 1 point
- Indicating **useful** properties of the desired configuration, e.g., that in order to satisfy the requirements, point O should be close enough to the boundary of P' 1 point

Remark. These points are not to be added.

No points are awarded for just claiming the answer.

Problem 5. Given an integer $k \ge 2$, set $a_1 = 1$ and, for every integer $n \ge 2$, let a_n be the smallest $x > a_{n-1}$ such that:

$$x = 1 + \sum_{i=1}^{n-1} \left\lfloor \sqrt[k]{\frac{x}{a_i}} \right\rfloor.$$

Prove that every prime occurs in the sequence a_1, a_2, \ldots

GRADING SCHEME

Remark. These points are surely not no be added to each other, but they are to be added up to the points mentioned below.

Solution 1 is based on the relation

$$\sum_{b \in B, b \le c} \left\lfloor \sqrt[k]{\frac{c}{\overline{b}}} \right\rfloor = c, \tag{1}$$

where B is the set of all kth-power-free numbers.

Solution 2 is based on the properties of the functions $f_n(x)$ and $g_n(x)$. It splits into two parts.

1. Preliminary observations:

2

Р

• Just introducing the functions $f_n(x)$ and $g_n(x)$, and establishing that $f_n(x) + 1 \ge f_n(x+1)$
$\dots \dots 0 { m points}$
• Proving that $f_n(x) < 0$ for all integer $x \in (a_{n-1}, a_n)$ 1 point
• Proving that a_j/a_i is not the <i>k</i> th power of an integer 1 point
2. The final induction. If, under the induction hypothesis, it is proved that
(1) a_n is the least number $x > a_{n-1}$ such that $g_n(x) = 0$
(2) the least number $x > a_{n-1}$ such that $g_n(x) = 0$ is kth-square-free1 point

Remark. The points for one approach are to be added up; the points for different approaches are not to be added up.

Problem 6. 2n distinct tokens are placed at the vertices of a regular 2n-gon, with one token placed at each vertex. A *move* consists of choosing an edge of the 2n-gon and interchanging the two tokens at the endpoints of that edge. Suppose that after a finite number of moves, every pair of tokens have been interchanged exactly once. Prove that some edge has never been chosen.

GRADING SCHEME

Showing that the circular order of any three tokens is reversed after the process has been carried out 1 point
Showing that the final arrangement is obtained from the initial one by reflection in some line ℓ 1 point
Proving that ℓ crosses two opposite sides a and b (but does not pass through the vertices) 1 point
Proving that a token cannot move along both a and b 1 point
Finally, showing that every two tokens either both moved along a or both moved along b
All these points are to be added up.

No points are awarded for examples of such sequence of switchings.